عدد طلايي و رشته اعداد فيبوناتچي

۩۩۩ خداوند بزرگترین ریاضیدان است ۩۩۩
عدد گنگی است که تقریبا برابر با و دربسیا ری از جاها این نسبت رعایت شده است وهر انسانی در زندگی روزمره خود با آن کار می کند.
این نسبت چگونه بدست می آید؟
یکی از شگفتیهای بزرگ اعداد است. فای از دوران باستان شناخته شده و در زمینه های هنر و معماری بسیار به کار برده شده است لیکن تحقیقاتی که اخیرا" روی آن شده نقش حیرت انگیز و باور نکردنی آنرا در طبیعت بیشتر آشکار ساخته است. نسبت طلایی یا عدد طلایی عددی است تقریبا" برابر 1.618 و تحقیقا" برابر
که ظاهرا" هیچ فرقی با اعداد گنگ دیگر ندارد جز آنکه مقدار عددیش متفاوت است. اما در حقیقت عددی است بسیار مخصوص و اسرار آمیز. این عدد چطور بوجود میاید؟
مربع ABCD را در نظر بگیرید با طول ضلع یکواحد( شکل زیر ). نقطه ی O وسط ضلع CB است. به مرکز این نقطه و به شعاع OA کمانی بکشید تا امتداد CB را در نقطه ی Q قطع کند. مربع مستطیل PQCD یک "مستطیل طلایی" است و نسبت طول به عرض آن برابر 1.618 میباشد.
گفته شده است که چنین مستطیلی به چشم انسان زیباتر از سایر مستطیل ها است. بهمین دلیل از دوران باستان تا به امروز در معماری بسیار به کار رفته است و امروز هم وقتی میخواهند چیزی را مستطیل شکل بسازند که چشم نواز هم باشد آنرا به شکل مستطیل طلایی میسازند یعنی اگر طولش را بر عزضش تقسیم کنیم عددی نزدیک به 1.6 بدست میاید. به عنوان مثال کارتهای اعتباری، گواهینامه رانندگی و کارتهای تلفن همگی به مستطیل طلایی نزدیک اند. نسبت طلایی در ساختمان بسیاری از قسمتهای بدن انسان منجمله دست، صورت، ضربان قلب، اندازه DNA و غیره، همچنین در ساختمان بدن گیاهان و جانوران مشاهده شده است. مثلا" نسبت طول ساعد انسان (از آرنج تا مچ دست) را بر طول کف دست برای تعداد زیادی از انسانها محاسبه کرده و معدل گرفته اند : عددی نزدیک به 1.6 بدست آمده است. (در مورد من این نسبت 27 cm به 19 cm است که برابر 1.42 میباشد)
و نیز وقتیکه مولکول DNA را در یک مستطیل محاط کنید بطوریکه اضلاع مستطیل مماس بر آخرین اتمهای مولکول از چهار جهت باشند، مستطیل طلایی بدست خواهد آمد.
حتی در انجیل نیز اشاره ای به نسبت طلایی شده است، بهمین دلیل این نسبت را از قدیم "نسبت الهی" هم گفته اند و گروهی را عقیده بر این است که در خلقت جهان هستی و کاینات این نسبت نقش ویژه ای دارد.
رشته ی فیبوناچی که توسط کشیشی مسیحی به همین نام(Leonardo Fibonacci, 1170-1240 ) ساخته شد رشته ایست که هر ترم آن از جمع کردن دو ترم قبلی اش بوجود میاید. اگر این رشته را با صفر شروع کنیم، بیست ترم اول آن خواهد شد
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181
اگر هر ترم این رشته را بر ترم قبلی اش تقسیم کنیم، نسبت طلایی بدست میاید و هر چه که دو ترم انتخاب شده بزرگتر باشند خارج قسمت آنها به مقدار تحقیقی نسبت طلایی نزدیکتر میشود. البته اجباری نداریم رشته فوق را با صفر شروع کنیم، میتوانیم آنرا با هر عدد مثبت دلخواهی( بعنوان ترم یکم )شروع کنیم وآنرا با عدد قبلی اش جمع نماییم تا ترم دوم بدست آید و این ترم را نیز با ترم قبلی اش جمع کنیم تا ترم سوم حاصل شود و همینطور. این رشته البته دیگر رشته فیبوناچی نیست و ما میتوانیم مثلا" نام خودمان را روی آن بگذاریم! بعنوان مثال اگر ترم اول را 81 انتخاب کنیم، آنگاه خواهیم داشت :
81, 161, 242, 403, 645, 1048, …
در اینجا نیز اگر هر ترم را بر ترم قبلی اش تقسیم کنیم، خارج قسمت، "نسبت طلایی" خواهد شد و هر چه جلوتر برویم این نسبت دقیقتر میشود.
حالا یک عدد مثبت انتخاب کنید و آنرا وارد یک ماشین حساب نمایید. جذر آنرا بگیرید و به آن یکواحد اضافه کنید. باز جذر عدد حاصل را بگیرید و به آن یکواحد اضافه کنید و اینکار را چندین مرتبه تکرار نمایید. با کمال تعجب خواهید دید که حاصل محاسبات پس از نوسانهای زیاد به نسبت طلایی نزدیک میشود و هر چه چرخه فوق را بیشتر تکرار کنید به مقدار تحقیقی آن نزدیکتر خواهید شد. اگر عدد انتخابی شما یک باشد، آنگاه نسبت طلایی برابر خواهد شد با :
این مرتبه عدد مثبت دلخواه دیگری بگیرید، آنرا معکوس کنید و به آن یکواحد اضافه نمایید. حاصل را باز معکوس کنید و به آن یکواحد اضافه نمایید و اینکار را چندین مرتبه دیگر هم تکرار کنید. باز پس از نوسانهای زیاد، به نسبت طلایی میرسید. اگر این مرتبه نیز عدد انتخابی شما یک باشد، آنگاه نسبت طلایی برابر خواهد شد با :
آنچه قابل ملاحظه است اینستکه محاسباتی که در سه چهار آزمایش فوق انجام گرفت، الگوریتمی کاملا" متفاوت با هم دارند :
" جمع کردن با ترم قبلی " و " جذر گرفتن و اضافه نمودن یک " و " معکوس نمودن و اضافه کردن یک " ماهیتی کاملا" متفاوت دارند ولی با کمال تعجب حاصل همگی یک چیز است : نسبت طلایی.
از تقسیم پاره خط به دو قسمت به طوری که نسبت طول قطعه بزرگ تر به طول تمام پاره خط، مساوی با طول قطعه کوچک تر به قطعه بزرگ تر باشد. این نسبت در قدیم به تقسیم خط به نسبت ذات وسطین و طرفین (یا تقسیم توافقی) معروف بوده است که معادل آن به صورت اعشاری در حدود 1.618 خواهد بود که این عدد همان عدد فی می باشد و یکی از خواص آن این است که اگر یک واحد از آن کسر کنیم مقدار آن برابر عکس خودش می شود.
نتایج تحقیقات فراوان علمی و روان شناسی اعلام می کند که زیباترین سطوح و اشکال از نظر انسان ها، آنهایی هستند که در ابعاد آنها نسبت طلایی به کار رفته باشد.
تعبیر هندسی دیگر اینگونهاست: پاره خط AB و نقطهٔ M روی آن مفروضند به گونهای که نسبت a به b برابر است با نسبت a+b به a . این نسبت برابر φ است. یعنی:
پیشینه توجه به عدد طلایی نه به زمان فیبوناچی بلکه به زمانهای بسیار دورتر میرسد.اقلیدس در جلد ششم از سیزده جلد کتاب مشهور خود که در آنها هندسه اقلیدسی را بنا نهاد، این نسبت را مطرح کردهاست. لوکا پاچیولی The Divine Proportion ) تالیف کرد. وی در آن نقاشیهایی از لئوناردو داوینچی آوردهاست که پنج جسم افلاطونی را نمایش میدهند و در آنها نیز به این نسبت اشاره شدهاست. در سال ۱۵۰۹ میلادی کتابی با عنوان نسبت الهی (
مصریان، سالها قبل از میلاد از این نسبت آگاه بودهاند و آن را در ساخت اهرام مصر رعایت کردهاند. بسیاری از الگوهای طبیعی در بدن انسان این نسبت را دارا هستند. نسبت طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم برابر همین عدد است. روانشناسان هم بر این باورند زیباترین مستطیل به دید انسان، مستطیلی است که نسبت طول به عرض آن برابر عدد طلایی باشد
برای بدست آوردن نسبت طلائی از تعریف هندسی آن استفاده میکنیم:
از این معادله که تعریف عدد است، که از معادله سمت راست میتوان نتیجه گرفت: ، پس خواهیم داشت:
با حذف b از طرفین به دست میآید:
پس از ساده سازی این معادله، معادله درجه دومی بر حسب به دست میآید:
که همان نسبت طلائی است
اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا” 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi 2 =phi+b 2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا” عدد طلایی را با phi نمایش می دهند)
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا” معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.
کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : “هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فيثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلايي می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد”.
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
نسبت طلایی در خوشنویسی
استاد میرعماد با پالایش خطوط پیشینیان و زدودن اضافات و ناخالصیها از پیکره نستعلیق و نزدیک کردن شگرف نسبتهای اجزای حروف و کلمات، به اعلا درجه زیبایی یعنی نسبت طلایی رسید و قدمی اساسی در اعتلای هنر نستعلیق برداشت. با بررسی اکثریت قاطع حروف و کلمات میرعماد متوجه میشویم که این نسبت به عنوان یک الگو در تار و پود حروف و واژهها وجود دارد و زاویه ۴۴۸/۶۳ درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلم گذاری و ادامه رانش قلم، حضوری تعیین کننده دارد. این مهم قطعاً در سایه شعور و حس زیباییشناسی وی حاصل آمده، نه آگاهی از فرمول تقسیم طلایی از دیدگاه هندسی و علوم ریاضی. میرعماد این نسبتها را نه تنها در اجزای حروف بلکه در فاصله دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و قطعات رعایت میکرده است.
و در آخر نمونه های از نسبت طلایی:
(بعضی از نمونه برای توضیح بیشتر درمتن از آن ها نامبرده شده است)
وقتیکه مولکول DNA را در یک مستطیل محاط کنید بطوریکه اضلاع مستطیل مماس بر آخرین اتمهای مولکول از چهار جهت باشند، مستطیل طلایی بدست خواهد آمد.
" نسبت طول ساعد انسان (از آرنج تا مچ دست) را بر طول کف دست برای تعداد زیادی از انسانها محاسبه کرده و معدل گرفته اند : عددی نزدیک به 1.6 بدست آمده است.
. نسبت عدد طلايي و رشته اعداد فيبوناتچي طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم
دارای نسبت طلایی هستند
نسبت قد انسان به فاصله ناف تا پاشنه پا
نسبت فاصله شانه تا بالای سر به اندازه سر
نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر
نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا
علمی - آموزشی- ریاضی
در سال 1202 لئونارد فیبوناچی (Leonardo Fibonacci) توانست به یک سری از اعداد دست پیدا کند که بعدها بعنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید. آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، بسادگی به این رشته از اعداد خواهید رسید :
البته برخی از ریاضیدانان عدد صفر را جزو رشته فیبوناچی نمی دانند و یا حداقل آنرا جمله صفرم سری می دانند. نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت :
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89, .
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179و .
بله بنظر می رسد که این رشته به سمت همان عدد طلائی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب عدد طلايي و رشته اعداد فيبوناتچي کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا باتقریب می توان اینگونه نمایش داد :
که در آن Phi عدد طلایی میباشد. البته فرمول های دقیق دیگری وجود دارند که اعداد سری و یا اعداد بعدی (Successor) این سری را نمایش می دهند که دراین مطلب به آن نخواهیم پرداخت.
معمای زاد و ولد خرگوش
در واقع فیبوناچی در سال 1202 به مسئله عجیبی علاقمند شد. او می خواست بداند اگر یک جفت خرگوش نر و ماده داشته باشد و رفتاری برای زاد و ولد آنها تعریف کند در نهایت نتیجه چگونه خواهد شد. فرضیات اینگونه بود :
- شما یک جفت خرگوش نر و ماده دارید که همین الآن بدنیا آمده اند.
- خرگوشها پس از یک ماه بالغ می شوند.
- دوران بارداری خرگوشها یک ماه است.
- هنگامی که خرگوش ماده به سن بلوغ می رسد حتما" باردار می شود.
- در هر بار بارداری خرگوش ماده یک خرگوش نر و یک ماده بدنیا می آورد.
- خرگوش ها هرگز نمی میرند.
حال سئوال اینجاست که پس از گذشت یکسال چه تعداد خرگوش نر و چه تعداد خرگوش ماده خواهیم داشت؟
لئوناردو فیبوناچی ایتالیایی حدود سال 1200 میلادی مساله ای طرح کرد : فرض کنید که یک جفت خرگوش نر و ماده در پایان هر ماه یک جفت خرگوش نر و ماده جدید بدنیا بیاورند . اگر هیچ خرگوشی از بین نرود , در پایان یک سال چند جفت خرگوش وجود دارد؟؟؟
فیبوناچی تصمیم گرفت برای محاسبه تعداد انها Fn را تعداد جفتها در شروع ماه N ام فرض کند.
پس F1 =1 و F2 =2 خواهد بود . چون در شروع ماه اول فقط یک جفت اصلی وجود دارد. اما با شروع ماه دوم جفت اول جفت دوم را درست میکند.
سپس او متوجه شد که با شروع ماه N ام جفتها به دو گروه تقسیم میشوند: Fn-1 تعداد جفتهای قدیمی و تعداد جفتهای جدید پس از N-1 ماه است .چون جفت جدید پس از یک ماه تولید میشود و بعد از یک ماه دیگر اولین جفت خود را تولید میکند . تعداد جفتهای جدید برابر تعداد جفتهای دو ماه قبل است که عدد طلايي و رشته اعداد فيبوناتچي با Fn-1 نشان داده میشود .
پس :
با استفاده از این فرمول و مقادیر اولیه F1 =1 و F2 =2 میتوان تعداد جفتها را پس از یک سال بدست اورد و نوشت F12=233 .
با یک توافق عمومی مقادیر اولیه از 1 و 1 بجای 1و 2 شروع میشود (بطوری که جمله های دنباله بصورت زیر نوشته میشوند)
. ,1,1,2,3,5,8,13,21,34,55,89,144,233
پس پاسخ این سئوال را در ابتدای مطلب بیان کرده بودیم.
مارپیچ فیبوناچی
به شکل اول نگاه کنید و ببینید که به چه زیبایی از کنار هم قرار دادن تعدادی مربع می توان رشته فیبو ناچی را بصورت هندسی نمایش داد. حال اگر در هر یک از این مربع ها از نقاط قرمز ربع دایره هایی رسم کنیم در نهایب به نوعی از مارپیچ حلزونی شکل می رسیم که به مارپیچ فیبوناچی (Fibonacci Spiral) معروف می باشد. بدیهی است که نرخ رشد و باز شدن این مارپیچ متناسب با نرخ بزرگ شدن اعداد در سری فیبوناچی می باشد.
سری فیبوناچی چه در ریاضیات چه در فیزیک و علوم طبیعی کاربردهای بسیار دیگری دارد، ارتباط زیبای فاصله های خوش صدا در موسیقی ، چگونگی تولد یک کهکشان و . از جمله این کاربردهاست.
دبستان مودت اصفهانک
اگه ياد بگيريم به مشكلات بخنديم هميشه چيزي براي خنديدن داريم
عدد فی یا نسبت طلایی
دنیای اعداد بسیار زیباست و شما می توانید در آن شگفتیهای بسیاری را بیابید. در میان اعداد برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه آشنایی بشر با آن به هزاران سال پیش از میلاد میرسد عددی است بنام “نسبت طلایی” یا Golden Ratio.
پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی a 2 =a*b+b 2 را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا” 1.61803399 یا 1.618 خواهیم رسید.
شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود بلکه در طبیعت نیز کاربردهای بسیاری دارد که به تدریج راجع به آن صحبت خواهیم کرد.
یک بنای یونان باستان که نسبت طلایی در ساختار آن مشاهده می شود.
اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه اهرام Giza خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا” 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi 2 =phi+b 2 خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا” عدد طلایی را با phi نمایش می دهند)
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا” معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد.
کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : “هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فيثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلايي می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد”.
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد. برای اطلاع بیشتر از نحوه محاسبه نسبت طلایی به این سایت سری بزنید.
آشنایی با سری فیبوناچی
باورکردنی نیست اما در سال 1202 لئونارد فیبوناچی (Leonardo Fibonacci) توانست به یک سری از اعداد دست پیدا کند که بعدها بعنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید. آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، بسادگی به این رشته از اعداد خواهید رسید :
البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبوناچی نمی دانند و یا حداقل آنرا جمله صفرم سری می دانند. نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت :
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89, …
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179و …
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
که در آن Phi عدد طلایی میباشد. البته فرمول های دقیق دیگری وجود دارند که اعداد سری و یا اعداد بعدی (Successor) این سری را نمایش می دهند که دراین مطلب به آن نخواهیم پرداخت.
معمای زاد و ولد خرگوش!
در واقع فیبوناچی در سال 1202 به مسئله عجیبی علاقمند شد. او می خواست بداند اگر یک جفت خرگوش نر و ماده داشته باشد و رفتاری برای زاد و ولد آنها تعریف کند در نهایت نتیجه چگونه خواهد شد. فرضیات اینگونه بود :
- شما یک جفت خرگوش نر و ماده دارید که همین الآن بدنیا آمده اند.
- خرگوشها پس از یک ماه بالغ می شوند.
- دوران بارداری خرگوشها یک ماه است.
- هنگامی که خرگوش ماده به سن بلوغ می رسد حتما” باردار می شود.
- در هر بار بارداری خرگوش عدد طلايي و رشته اعداد فيبوناتچي ماده یک خرگوش نر و یک ماده بدنیا می آورد.
- خرگوش ها هرگز نمی میرند.
حال سئوال اینجاست که پس از گذشت یکسال چه تعداد خرگوش نر و چه تعداد خرگوش ماده خواهیم داشت؟ (پاسخ را شما بدهید)
به شکل زیر نگاه کنید و ببینید که به چه زیبایی از کنار هم قرار دادن تعدادی مربع می توان رشته فیبو ناچی را بصورت هندسی نمایش داد. حال اگر در هر یک از این مربع ها از نقاط قرمز ربع دایره هایی رسم کنیم در نهایب به نوعی از مارپیچ حلزونی شکل می رسیم که به مارپیچ فیبوناچی (Fibonacci Spiral) معروف می باشد. بدیهی است که نرخ رشد و باز شدن این مارپیچ متناسب با نرخ بزرگ شدن اعداد در سری فیبوناچی می باشد.
سری فیبوناچی چه در ریاضیات چه در فیزک و علوم طبیعی کاربردهای بسیار دیگری دارد، ارتباط زیبای فاصله های خوش صدا در موسیقی، چگونگی تولد یک کهکشان و … که کاربرد این سری جادویی را بیش از پیش نشان می دهد.
طریقه رسم نسبت طلایی با گونیا و پرگار
پاره خط AB را در نظر بگیرید. مساله ما یافتن نقطه E بر روی این پاره خط می باشد به طوری که نسبت AE به EB یک نسبت طلایی باشد.
مرحله ۱ : از نقطه B خط BC را عمود بر آن طوری رسم کنید که اندازه BC نصف اندازه AB باشد. ( به کمک پرگار می توانید این کار را انجام بدهید.)
مرحله ۲ : نقطه A را به نقطه C وصل کنید.
مرحله ۳ : از نقطه C دایره ای به شعاع BC رسم کنید. این دایره خط AC را در نقطه D قطع می کند.
مرحله ۴ : از نقطه A یک دایره به شعاع AD رسم کنید. این دایره خط AB را در نقطه E قطع می کند به قوری که نسبت AE به EB همان نسبت طلایی است.
طریقه رسم مستطیل طلایی با گونیا و پرگار
مستطیل CBGD را در نظر بگیرید. مساله ما یافتن مستطیلی است که نسبت اضلاع آن یک نسبت طلایی باشد.
مرحله ۱ : نقطه A را در وسط DG پیدا کنید.
مرحله ۲ : از نقطه A یک دایره به شعاع AB رسم کنید.
مرحله ۳ : خط DG را ادامه داده تا دایره به مرکز A را در نقطه E قطع کند. نسبت DE به DC همان نسبت طلایی است و مستطیل CFED یک مستطیل طلایی می باشد.
نسبت طلایی در خوشنویسی
استاد میرعماد با پالایش خطوط پیشینیان و زدودن اضافات و ناخالصیها از پیکره نستعلیق و نزدیک کردن شگرف نسبتهای اجزای حروف و کلمات، به اعلا درجه زیبایی یعنی نسبت طلایی رسید و قدمی اساسی در اعتلای هنر نستعلیق برداشت. با بررسی اکثریت قاطع حروف و کلمات میرعماد متوجه میشویم که این نسبت به عنوان یک الگو در تار و عدد طلايي و رشته اعداد فيبوناتچي پود حروف و واژهها وجود دارد و زاویه ۴۴۸/۶۳ درجه که مبنای ترسیم مستطیل طلایی است، در شروع قلم گذاری و ادامه رانش قلم، حضوری تعیین کننده دارد. این مهم قطعاً در سایه شعور و حس زیباییشناسی وی حاصل آمده، نه آگاهی از فرمول تقسیم طلایی از دیدگاه هندسی و علوم ریاضی. میرعماد این نسبتها را نه تنها در اجزای حروف بلکه در فاصله دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و قطعات رعایت میکرده است.
نسبت طلایی در طبیعت
به اشکال شبیه چشم روی بدن پروانه که علامت گذاری شده است،توجه کنید.نسبت فواصل طولی و عرضی این علائم یک نسبت طلائی است.
پوسته مارپیچی یک حلزون نمونه ای ساده ودرعین حال زیبا، از نسبت طلائی است.
نسبت طلایی در ساقه گیاهان
نسبت طلایی در عکاسی
ترکیب بندی تصویر، در کتابها و مجلات تخصصی عکاسی، اغلب به شکل یک نسخه تجویزی ارائه میشود. انگار که پیروی از تعدادی قاعده میتواند نتیجه قانع کننده ای را تضمین کند. شاید بهتر باشد این قواعد را تنها به عنوان چکیده ایده هایی در نظر گرفت که عکاسان (و البته نقاشان و سایر هنرمندان قرنها پیش از اختراع دوربین) آنها را برای خلق یک تصویر تاثیر گذار، مفید یافته اند.
هر ترکیب بندی عکسی را میتوان کارآمد دانست به شرط این که عناصر صحنه به طور موثر با بینندگان مورد نظر آن عکس، ارتباط برقرار کند. در اغلب موارد، نکته اساسی در شناسایی عناصر کلیدی صحنه نهفته است تا با تنظیم محل دوربین و میزان نور دهی، آنها را از دل سایر اطلاعات تصویری متفرقه، بیرون بکشید. همین اشیاء مزاحم، بسیاری از عکسها را خراب میکنند. اگر عکاسی را تازه شروع کرده اید، بهتر است به جای تمرکز زیاد روی جزییات خیلی خاص، تنها روی ساختار کلی صحنه تمرکز کنید. چرا که تاثیر آنها در مقابل ترکیب بندی عمومی عکس، بسیار سطحی است.
در این مقاله به معرفی سه روش کاربردی در امر ترکیب بندی تصویر پرداخته خواهد شد. در آغاز به معرفی کلی تکنیکی میپردازیم که قرنهاست شناخته شده است یعنی قانون تعادل (یا قانون طلایی – Golden Mean). این قانون در واقع یک فرمول هندسی است که توسط یونانی های باستان ابدا شده.استدلال بر این است که ترکیب بندی ای که بر اساس این تئوری تشکیل شده باشد، تاثیرگذار و قوی مینماید. ایده اصلی که در پس این تئوری است در واقع استفاده از خطوط هندسی است که به سادگی توسط چشم بیننده دنبال شوند. طی قرون متمادی، قانون تعادل (یا قانون طلایی – Golden Mean) راهبردی مهم و ابزاری کارآمد برای هنرمندان و نقاشان به حساب می آمد. امروزه با توجه به ارزش این ابزار، آشنایی با آن به عکاسان نیز توصیه میشود.
قانون یک سوم (خطوط و نقاط طلایی):
قانون یک سوم در واقع مختصر شده مفهوم طلایی است. فلسفه اصلی که در پشت این مفهوم قرار دارد از یک ترکیب و کادر بندی متقارن و مستقر در مرکز کادر که معمولا کسل کننده است جلوگیری می کند. 4 خط تقسیم کننده کادر، خطوط طلایی و محل برخورد این خطوط، نقاط طلایی نامیده میشوند. (شکل های شماره یک و دو)
از بین بردن تقارن با استفاده از قانون یک سوم به دو شکل می تواند صورت بگیرد. در یک روش می توان تصویر را به دو بخش مجزا تقسیم کرد به نحوی که یک قسمت یک سوم و قسمت دیگری دو سوم تصویر را شامل شود (شکل شماره یک).
در روشی دیگر، تمرکز مستقیما بر روی نقاط طلایی است. فرض کنید که منظره ای بسیار زیبا و بدیع پیش رو دارید اما این منظره فاقد یک نمای هندسی و به اصطلاح Geometric خوب و جذاب است. به عبارت دیگر در عین اینکه منظره بسیار خاص و زیبا است اما اگر به صورت تصویر در بیاید تا حدودی کسل کننده خواهد شد.
راه حل چیست؟ سعی کنید در این منظره یکنواخت یک نقطه عطف و تمایز پیدا کنید، نقطه ای که بتواند یکنواختی و یکدستی نما را از بین ببرد. سپس این سوژه را روی یکی از نقاط طلایی قرار دهید. این نقطه اولین نگاه بیننده را جذب کرده و مخاطب را به دیدن باقی تصویر دعوت میکند. (شکل شماره دو)
برای تعیین برخی از اندازه ها به نسبتهای شکیل و زیبا، معروفترین فرمول، شیوه ای است که یونانیان باستان ابداع کرده اند و به ” نسبت طلایی” معروف است . نسبت طلایی در اصل، فرمولی ریاضی و دارای زیبایی بصری است. در این روش : ابتدا مربع را با خطی عمود بر دو ضلع مربع به دو مستطیل مساوی تقسیم می کنند، سپس محل تقاطع آن خط با یکی از اضلاع مربع ( نقطه X) را مرکز دایره ای به شعاع قطر مستطیل قرار می دهند ( فاصله X تا Y) و با ترسیم این دایره و تعیین محل تقاطع آن با امتداد ضلع مربع ( نقطه Z) طول مستطیلی معروف به “مستطیل طلایی” به دست می آید که عرض آن برابر ضلع مربع و است و نسبت این طول و عرض ثابت و دارای زیبایی خاصی است (نسبت اندازه پاره خط C به A با نسبت اندازه A به B یکی است) یونانیان در ساخت بسیاری از اشیا و ابینه و معابد و کوره ها و … آن را به کار می بستند.
قانون یک سوم کادر نیز در واقع همان مفهوم طلایی است. 4 خط تقسیم کننده یک کادر، خطوط طلایی و محل برخورد این خطوط، نقاط طلایی نامیده میشوند.
یکی از ابزارهای ترکیب بندی عکس برای هدایت چشم بیننده به نقطه مورد نظر عکاس، مارپیچ طلایی است. استفاده از این تکنیک در سوژه هایی که با نقاط طلایی سازگار نبوده اند قابل استفاده است. نحوه رسم مارپیچ طلایی نیز به این صورت است.
نسبت طلایی در بدن انسان
دانشمندان گذشته نیز از نسبت طلایی استفاده های زیادی کرده اند. به عنوان مثال لئوناردو داوینچی در ترسیم نقاشی معروف خود از بدن انسان از نسبت طلایی بهره گرفته است.
در بدن انسان مثالهای بسیار فراوانی از این نسبت طلایی وجود دارد. در شکل زیر نسبت M/m یک نسبت طلایی است که در جای جای بدن انسان می توان آنرا دید. به عنوان مثال نقاطی از بدن که دارای نسبت طلایی هستند:
نسبت قد انسان به فاصله ناف تا پاشنه پا
نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج
نسبت فاصله شانه تا بالای سر به اندازه سر
نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر
نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا
اینها تنها چند مثال از وجود نسبت طلایی در بدن انسان بود که بدن انسان را در حد کمال زیبایی خود نشان می دهد.
در تصاویر زیر نسبت خط سفید به آبی، آبی به زرد، زرد به سبز و سبز به بنفش یک نسبت طلایی است!!
برای دیدن اطلاعات بسیار دقیقی از وجود نسبت طلایی در دندانها و دندان پزشکی به این سایت حتما سری بزنید
آموزش ریاضی
دنياي اعداد بسيار زيباست و شما مي توانيد در آن شگفتيهاي بسياري را بيابيد. در ميان اعداد برخي از آنها اهميت فوق العاده اي دارند، يکي از اين اعداد که سابقه آشنايي بشر با آن به هزاران سال پيش از ميلاد ميرسد عددي است بنام "نسبت طلايي" يا Golden Ratio.
پاره خطي را در نظر بگيريد و فرض کنيد که آنرا بگونه اي تقسيم کنيد که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنيد. اگر اين معادله ساده يعني a2=a*b b2 را حل کنيم (کافي است بجاي b عدد يک قرار دهيم بعد a را بدست آوريم) به نسبتي معادل تقريبا" 1.61803399 يا 1.618 خواهيم رسيد.
شايد باور نکنيد اما بسياري از طراحان و معماران بزرگ براي طراحي محصولات خود امروز از اين نسبت طلايي استفاده مي کنند. چرا که بنظر ميرسد ذهن انسان با اين نسبت انس دارد و راحت تر آنرا مي پذيرد. اين نسبت نه تنها توسط معماران و مهندسان براي طراحي استفاده مي شود بلکه در طبيعت نيز کاربردهاي بسياري دارد
اهرام مصر يکي از قديمي ترين ساخته هاي بشري است که در آن هندسه و رياضيات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بيش از 2500 سال پيش از ميلاد مي رسد يکي از شاهکارهاي بشري است که در آن نسبت طلايي بکار رفته است. به اين شکل نگاه کنيد که در آن بزرگترين هرم از مجموعه اهرام Giza خيلي ساده کشيده شده است.
مثلث قائم الزاويه اي که با نسبت هاي اين هرم شکل گرفته شده باشد به مثلث قائم مصري يا Egyptian Triangle معروف هست و جالب اينجاست که بدانيد نسبت وتر به ضلع هم کف هرم معادل با نسبت طلايي يعني دقيقا" 1.61804 مي باشد. اين نسبت با عدد طلايي تنها در رقم پنجم اعشار اختلاف دارد يعني چيزي حدود يک صد هزارم. باز توجه شما را به اين نکته جلب مي کنيم که اگر معادله فيثاغورث را براي اين مثلث قائم الزاويه بنويسم به معادله اي مانند phi2=phi b2 خواهيم رسيد که حاصل جواب آن همان عدد معروف طلايي خواهد بود. (معمولا" عدد طلايي را با phi نمايش مي دهند)
طول وتر براي هرم واقعي حدود 356 متر و طول ضلع مربع قاعده حدودا" معادل 440 متر مي باشد بنابر اين نسبت 356 بر 220 (معادل نيم ضلع مربع) برابر با عدد 1.618 خواهد شد.
کپلر (Johannes Kepler 1571-1630) منجم معروف نيز علاقه بسياري به نسبت طلايي داشت بگونه اي که در يکي از کتابهاي خود اينگونه نوشت : "هندسه داراي دو گنج بسيار با اهميت مي باشد که يکي از آنها قضيه فيثاغورث و دومي رابطه تقسيم يک پاره خط با نسبت طلايي مي باشد. اولين گنج را مي توان به طلا و دومي را به جواهر تشبيه کرد".
تحقيقاتي که کپلر راجع به مثلثي که اضلاع آن به نسبت اضلاع مثلث مصري باشد به حدي بود که امروزه اين مثلث به مثلث کپلر نيز معروف مي باشد. کپلر پي به روابط بسيار زيبايي ميان اجرام آسماني و اين نسبت طلايي پيدا کرد.
به شکل زير نگاه کنيد و ببينيد که به چه زيبايي از کنار هم قرار دادن تعدادي مربع مي توان رشته فيبو ناچي را بصورت هندسي نمايش داد. حال عدد طلايي و رشته اعداد فيبوناتچي اگر در هر يک از اين مربع ها از نقاط قرمز ربع دايره هايي رسم کنيم در نهايب به نوعي از مارپيچ حلزوني شکل مي رسيم که به مارپيچ فيبوناچي (Fibonacci Spiral) معروف مي باشد. بديهي است که نرخ رشد و باز شدن اين مارپيچ متناسب با نرخ بزرگ شدن اعداد در سري فيبوناچي مي باشد.
سري فيبوناچي چه در رياضيات چه در فيزک و علوم طبيعي کاربردهاي بسيار ديگري دارد، ارتباط زيباي فاصله هاي خوش صدا در موسيقي، چگونگي تولد يک کهکشان و . که کاربرد اين سري جادويي را بيش از پيش نشان مي دهد.
نسبت طلايي در طبيعت
به اشکال شبيه چشم روي بدن پروانه که علامت گذاري شده است،توجه کنيد.نسبت فواصل طولي و عرضي اين علائم يک نسبت طلائي است.
پوسته مارپيچي يک حلزون نمونه اي ساده ودرعين حال زيبا، از نسبت طلائي است.
نسبت طلايي در ساقه گياهان
مارپيچ طلايي
يکي از ابزارهاي ترکيب بندي عکس براي هدايت چشم بيننده به نقطه مورد نظر عکاس، مارپيچ طلايي است. استفاده از اين تکنيک در سوژه هايي که با نقاط طلايي سازگار نبوده اند قابل استفاده است.
دانشمندان گذشته نيز از نسبت طلايي استفاده هاي زيادي کرده اند. به عنوان مثال لئوناردو داوينچي در ترسيم نقاشي معروف خود از بدن انسان از نسبت طلايي بهره گرفته است.
![]() |
در بدن انسان مثالهاي بسيار فراواني از اين نسبت طلايي وجود دارد. در شکل زير نسبت M/m يک نسبت طلايي است که در جاي جاي بدن انسان مي توان آنرا ديد. به عنوان مثال نقاطي از بدن که داراي نسبت طلايي هستند:
نسبت قد انسان به فاصله ناف تا پاشنه پا
نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج
نسبت فاصله شانه تا بالاي سر به اندازه سر
نسبت فاصله ناف تا بالاي سر به فاصله شانه تا بالاي سر
نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا
اينها تنها چند مثال از وجود نسبت طلايي در بدن انسان بود که بدن انسان را در حد کمال زيبايي خود نشان مي دهد.
من دبیر ریاضی آموزش و پرورش شهرستان سقز در استان کردستان و کارشناسی ارشد ریاضی محض گرایش آنالیز از داشگاه صنعتی سهند میباشم .در این وبلاگ سعی بر آن است مطالبی در مورد آموزش ریاضی وریاضیات دانشگاهی ارائه شود.
ششم یاس
عدد طلائی عددیست ، تقریباَ مساوی 1.618 ، که خواص جالب بسیاری دارد ،اشکال تعریف شده با نسبت طلائی ، از نظر زیبائی شناسی در فرهنگهای غربی دلپذیر شناخته شده، چون بازتابنده خاصیتی بین تقارن و عدم تقارن است.
پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. اگر این معادله ساده یعنی a2=ab+b را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا
1.61803399 یا 1.618 خواهیم رسید.
تعریف دیگر نسبت طلایی این است که «عددی مثبت است که اگر به آن یک واحد اضافه کنیم به مربع آن خواهیم رسید». تعریف هندسی آن چنین است: طول مستطیلی به مساحت واحد که عرض آن یک واحد کمتر از طولش باشد.
بسیاری از مراجع علمی، حرف یونانی φ را برای این عدد انتخاب کردهاند
. اگر عدد في را بتوان دو برسانيم مثل اين است كه يك واحد به عدد في افزوده باشيم يعني Φ²=Φ+1 و اگر عدد يك را بر في تقسيم كنيم مثل اين است كه يك واحد از عدد في كم كرده باشيم يعني :
1/Φ=Φ-1
پوسته مارپيچي يک حلزون نمونه اي ساده ودرعين حال زيبا، از نسبت طلائي است.
نسبت قطر مارپیچ های حلزون نیز نسبت 1.618 به یک را دارد.حلزون گوش انسان هم این تناسب را دارد
در یک کندوی عسل همیشه تعداد زنبورهای ماده از نرها بیشتر است. حال اگر تعداد زنبورهای ماده را به نر تقسیم کنیم در هر کندویی در هر گوشه ی کره ی خاکی یک عدد ثابت بدست می آید. که همان فی است.
در مورد دی.ان.ای ، مولکول دی.ان.ای از دو زنجیر پلی نوکئوتیدی ساخته شده. بین بازهای آلی آدنین و تیمین 2 پیوند هیدروژنی و بین بازهای آلی گوانین و سیتوزین 3 پیوند هیدروژنی وجود داره. مطلب جالب در مورد دو رشته پلی نوکلئوتیدی سازنده مولکول دی.ان.ای اینه که هر کدوم از این دوتا رشته 34 آنگستروم طول و 21 آنگستروم پهنا داره که این اعداد و تعداد پیوند ها اعداد دنباله فیبوناچی اند (جهت اطلاع اونایی که نمیدونن بگم که اگه میخواین بدونین یه آنگستروم چقدره ، برید یه متر به طول یک متر بردارید و اون یه متر رو ده میلیارد قسمت کنید هر قسمت برابر یه آمگسترومه. ) . داوینچی نخستین کسی بود که نسبت دقیق استخوان های انسان را اندازه گیری نمود و ثابت کرد که این تناسبات با ضریب عدد فی هستند.
در بدن انسان مثالهاي بسيار فراواني از اين نسبت طلايي وجود دارد. در شکل زير نسبت M/m يک نسبت طلايي است که در جاي جاي بدن انسان مي توان آنرا ديد. به عنوان مثال نقاطي از بدن که داراي نسبت طلايي هستند:
نسبت قد انسان به فاصله ناف تا پاشنه پا
نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج
نسبت فاصله شانه تا بالاي سر به اندازه سر
نسبت فاصله ناف تا بالاي سر به فاصله شانه تا بالاي سر
نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا
- هر گاه شما طول صورت فردي را به عرض ان تقسيم كنيد هر چقدر اين عدد به عدد طلايي نزديكتر باشد ان فرد باهوشتر است ( ثابت نشده.)
طول هرسه بند انگشت يكي از انگشتان خود را به دلخواه اندازه بگيريد. اندازه بند بالايي را به وسطي تقسيم كنيد. عددي در حدود 1.6 خواهد بود نه ؟!حال همان عمل بالا (تعيين نسبت) را در مورد بند وسط به بند كوچك انجام دهيد.
اين نسبت نقش پيچيدهاي در پديدههايي مانند ساختار كريستالها ، سالهاي نوري فاصله بين سيارات و پريودهاي چرخش ضريب شكست نور در شيشه ، تركيبهاي موسيقي، ساختار سيارهها و حيوانات بازي ميكند . علم ثابت كرده است كه اين نسبت به راستي نسبت پايه و مبناي خلقت جهان است . هنرمندان دوره رونسانس عدد في را يك نسبت الهي ميدانستهاند .
در بين مثالهاي بيشمار از وجود اين نسبت و يكي از برجستهترين آنها مارپيچ هاي DNA است . اين دو مارپيچ فاصله دقيقي را با هم براساس نسبت طلايي حفظ ميكنند و دور يكديگر ميتابند
ردپای نسبت طلایی در دنیای نجوم نیز دیده می شود. در میان حلقه های زحل شکافی وجود دارد به نام کاسینی که بسیار معروف است. شاید جالب باشد که بدانید این شکاف طول حلقه زحل را به نسبت طلایی تقسیم کرده است! اگر فاصله عطارد از خورشید را به عنوان واحد در نظر بگیریم و فاصله بقیه سیاره هارا به طور نسبی (نسبت به سیاره قبلی) به دست بیاوریم به نتایج بسیار جالبی می رسیم
پرگار جالبی که ضمن حفاری در پمپی ، یکی از شهرهای ایتالیا ، در کارگاه یک مجسمه ساز پیدا شده است ، دال بر اونه که یونانی ها و رومی ها نه تنها از عدد طلایی آگاهی داشتند بلکه از اون تو عمل هم استفاده می کردند این پرگار که هم اکنون در موزهی ناپل نگه داری میشه طولی برابر 146 میلیمتر داره و به وسیله ی لولا به دو بازوی خود با طول های 56 و 90 میلیمتر تقسیم شده که نسبت این دو عدد به عدد طلایی نزدیکه. تو هنر محشر معماری که ناگفته معلومه این عدد چقدر کاربرد داره . حدود 2500 ساله که از این عدد تو معماری استفاده میشه به طور مثال در بسیاری از معبد های یونانی ، میشه بارها این نسبت رو تو بناها پیدا کرد مثلا ً در معبد پارتئون (معبد دختر) که در بین سالهای 447 تا 338 پیش از میلاد مسیح تو آکروپولیس تو آتن ساخته شده و عظیم ترین یادگار هنر معماری یونان باستان هستش، نسبت ارتفاع تمامی ساختمان به طول تیر بزرگ برابر عدد طلایی است .
در قرون وسطا برای نسبت طلایی مفهومی عرفانی و خرافی قائل بودند. معماران قرون وسطا رازهای مربوط به پیدا کردن نسبت ها از جمله نسبت طلایی رو با دقت از دیگران پنهان میکردند ،از جمله اوسقف شهر اوترخت به این دلیل که با حیله تونسته بود به روش یافتن نسبت ها تو ساختمان کلیسا ها پی ببره ، جان خودش رو از دست داد. از جمله آثار قرون وسطا که عدد طلایی تو اون به چشم میخوره میشه به یکی از شاهکارهای معماری سده ی دوازدهم میلادی ، کلیسای اوس پنسکی در چرنیگوف (جمهوری اوکراین) اشاره کرد که اگه نسبت اندازه ها تو قسمت های مختلف رو کلیسا رو محاسبه کنیم همه جا به تقریب به عدد طلایی میرسیم.
بعضی از هنرمندای مجسمه ساز هم از این نسبت استفاه میکنند . به طور مثال برای تقسیم بندی نقاط مختلف صورت میشه از نسبتهای طلایی که در بالا گفتم استفاده کرد اینجوری هم کار طبیعی تر جلوه داده میشه هم به چشم ناظر زیباتر دیده میشه که همش تاثیر عدد طلایی هستش .
در موسیقی هم عدد طلایی یافت شده . به طور مثال سر و حلقه ویلن در مستطیل طلایی قرار میگیرد و کاسه آن از دوایری تشکیل شده که نسبت قطر اونا عدد طلایی هستش . زمانی صدای ساز زیبا جلوه میکنه که نسبت دامنه امواج صوت به عدد طلایی میل کنه و اما در خوشنویسی ، استاد میر عماد با تغییراتی که تو خطوط پیشینیان انجام داد و اضافات و ناخالصی ها رو از پیکره نستعلیق حذف کرد استاد میرعماد نسبت های اجزای حروف و کلمات رو به درجه ی اعلای زیبایی یعنی نسبت طلایی نزدیک کرد . با بررسی اکثریت قاطع حروف و کلمات استاد متوجه میشویم که این نسبت به عنوان یک الگو تو تار و پود حروف و واژه ها وجود داره و زاویه 63.448 درجه که مبنای ترسیم مستطیل طلایی است ، در شروع قلم گذاری و ادامه رانش قلم حضوری تعیین کننده داره.این کارها قطعا ً نتیجه شعور و حس زیبایی شناسی استاد میر عماد هستش نه آگاهی از از فرمول تقسیم طلایی و دیدگاه هندسی و علوم ریاضی کسی و بگیم یه مستطیل بکش ، تو اغلب موارد این نسبت اضلاع این مستطیل به عدد طلایی نزدیکه چون ذهن ما به طور ناخودآگاه اینو میخواد. من خودم اینو امتحان کردم . مستطیلی که طرف مقابل برام کشید تا 3 رقم اعشار با عدد طلایی یکسان بود . ) همچنین استاد میر عماد این نسبتها رو تو فاصله بین دو سطر و مجموعه دو سطر چلیپاها و کادرهای کتابت و عدد طلايي و رشته اعداد فيبوناتچي قطعات رعایت کرده
نسبت دو عضو متوالی دنباله
اولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر میبینیم:
۱۰-------۹--------۸--------۷---------۶-------۵-------۴-------۳-------۲-------۱-------شماره جمله
۵۵------۳۴------۲۱-------۱۳-------۸-------۵-------۳-------۲-------۱-------۱-------مقدار جمله
نسبت جمله دوم به اول برابر است با ۱
نسبت جمله سوم به دوم برابر است با ۲
نسبت جمله چهارم به سوم برابر است با ۱٫۵
نسبت جمله پنجم به چهارم برابر است با ۱٫۶۶
نسبت جمله ششم به پنجم برابر است با ۱٫۶
نسبت جمله هفتم به ششم برابر است با ۱٫۶۲۵
نسبت جمله هشتم به هفتم برابر است با ۱٫۶۱۵
نسبت جمله نهم به هشتم برابر است با ۱٫۶۱۹
نسبت جمله دهم به نهم برابر است با ۱٫۶۱۷
به نظر میرسد که این رشته به عدد طلایی نزدیک میشود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد ۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۵ میرسیم که با تقریب ۱۴ رقم اعشار نسبت طلایی را نشان میدهد. نسبت جملات متوالی به عدد طلایی میل میکند.